In geometry, the snub cube, or snub cuboctahedron, is an Archimedean solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices. Kepler first named it in Latin as cubus simus in 1619 in his Harmonices Mundi. H. S. M. Coxeter, noting it could be derived equally from the octahedron as the cube, called it snub cuboctahedron, with a vertical extended Schläfli symbol , and representing an alternation of a truncated cuboctahedron, which has Schläfli symbol .
The snub cube may also be constructed from a rhombicuboctahedron. It started by twisting its square face (in blue), allowing its triangles (in red) to be automatically twisted in opposite directions, forming other square faces (in white) to be skewed quadrilaterals that can be filled in two equilateral triangles.
The snub cube can also be derived from the truncated cuboctahedron by the process of alternation. 24 vertices of the truncated cuboctahedron form a polyhedron topologically equivalent to the snub cube; the other 24 form its mirror-image. The resulting polyhedron is vertex-transitive but not uniform.
This snub cube has edges of length , a number which satisfies the equation and can be written as To get a snub cube with unit edge length, divide all the coordinates above by the value α given above.
The snub cube is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. It is chiral, meaning there are two distinct forms whenever being Mirror image. Therefore, the snub cube has the rotational octahedral symmetry . The polygonal faces that meet for every vertex are four equilateral triangles and one square, and the vertex figure of a snub cube is . The dual polyhedron of a snub cube is pentagonal icositetrahedron, a Catalan solid.
|
|